- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources4
- Resource Type
-
0003000001000000
- More
- Availability
-
40
- Author / Contributor
- Filter by Author / Creator
-
-
Kuwaranancharoen, Kananart (4)
-
Sundaram, Shreyas (4)
-
Xin, Lei (2)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
& Arya, G. (0)
-
& Attari, S. Z. (0)
-
- Filter by Editor
-
-
null (2)
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Kuwaranancharoen, Kananart; Sundaram, Shreyas (, American Control Conference)null (Ed.)
-
Kuwaranancharoen, Kananart; Xin, Lei; Sundaram, Shreyas (, American Control Conference)null (Ed.)
-
Kuwaranancharoen, Kananart; Sundaram, Shreyas (, 2018 IEEE Conference on Decision and Control (CDC))The problem of finding the minimizer of a sum of convex functions is central to the field of distributed optimization. Thus, it is of interest to understand how that minimizer is related to the properties of the individual functions in the sum. In this paper, we provide an upper bound on the region containing the minimizer of the sum of two strongly convex functions. We consider two scenarios with different constraints on the upper bound of the gradients of the functions. In the first scenario, the gradient constraint is imposed on the location of the potential minimizer, while in the second scenario, the gradient constraint is imposed on a given convex set in which the minimizers of two original functions are embedded. We characterize the boundaries of the regions containing the minimizer in both scenarios.more » « less
An official website of the United States government
